

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	E ,
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: APP601S	COURSE NAME: ANALYTICAL PRINCIPLES AND PRACTICE
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

	FIRST OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	DR JULIEN LUSILAO
MODERATOR:	DR MARIUS MUTORWA

	INSTRUCTIONS
1.	Answer ALL the questions in the answer book provided.
2.	Write and number your answers clearly.
3.	All written work MUST be done in blue or black ink.

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

List of useful tables, formulas and constants

THIS QUESTION PAPER CONSISTS OF 11 PAGES (Including this front page and attachments)

Question 1: Multiple Choice Questions	[20]
1.1 How many moles of Na ⁺ ions are in 20 mL of 0.40 M Na ₃ PO ₄ ?	(2)
(A) 0.0080 (B) 0.050 (C) 0.024 (D) 0.20	
1.2 A mass of 5.4 grams of Al reacts with an excess of $CuCl_2$ in solution, as shown below $3CuCl_2 + 2Al \rightarrow 2AlCl_3 + 3Cu$ What mass of solid copper (Cu) is produced?	v: (2)
(A) 0.65 g (B) 8.5 g (C) 13 g (D) 19 g	
1.3 For the reaction $2C(s) + O_2(g) \to 2CO(g)$ What are the signs of ΔH and ΔS ?	(2)
 (A) They are both negative (B) They are both positive (C) ΔH is positive and ΔS is negative (D) ΔH is negative and ΔS is positive 1.4 The ion-product constant for water (K _w) at 45 °C is 4.0 x 10 ⁻¹⁴ . What is the pH of	
pure water at this temperature? (A) 7.0 (B) 6.7 (C) 7.3 (D) 13.4	(2)
1.5 The amount of chloride ion in a water sample is to be determined by adding excess silver nitrate (MW $AgNO_3$: 169.91 g·mol ⁻¹). $Cl^-(aq) + AgNO_3(aq) \longrightarrow AgCl(s) + NO_3^-(aq)$ If 1.0 g of silver chloride (MW $AgCl$: 143.25 g·mol ⁻¹) is precipitated, what mass of	

(2)

chloride ion is in the original sample?

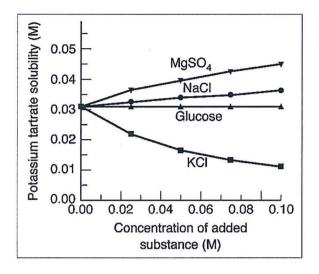
	(A) 0.34 g (B) 0.50 g (C) 0.25 g (D) 0.75 g	
1.6	The ionization of benzoic acid is represented by this equation. $C_6H_5COOH(aq) \leftrightarrow H^+(aq) + C_6H_5COO^-(aq)$ If a 0.045 M solution of benzoic acid has an [H ⁺] = 1.7 x IO^{-3} , what is the K_a of benzoic acid?	(2
	(B) 6.4×10^{-5} (C) 3.8×10^{-2} (D) 8.4×10^{-1}	
1.7	$Mg_3N_2(s) + 6H_2O(l) \rightarrow 2NH_3(aq) + 3Mg(OH)_2(s)$ If 54.0 grams of water are mixed with excess magnesium nitride, then how many grams of ammonia are produced?	(2
	(A) 1.00 (B) 17.0 (C) 51.0 (D) 153	
1.8	For the reaction $C_6H_5OH(aq)+CN^-(aq) \leftrightarrow HCN(aq)+C_6H_5O^-(aq)$ The equilibrium constant for this reaction is less than 1. What is the strongest base in this system?	(2)
	(A) $C_6H_5OH(aq)$ (B) $CN^-(aq)$ (C) $C_6H_5O^-(aq)$ (D) $HCN(aq)$	
1.9	The solubility product constant, K_{sp} , of Ag_3PO_4 is 1.8 x10 ⁻¹⁸ . What is the molar solubility of Ag_3PO_4 in water? Neglect any hydrolysis.	(2
	(A) 1.6×10^{-5} (B) 8.4×10^{-7} (C) 1.3×10^{-9} (D) 4.5×10^{-19}	
1.10	The balanced equation for the reduction of the nitrate anion by the Fe(II) ion in	(2)

- (A) $3Fe^{2+}(aq) + NO_3^{-}(aq) + 4H^{+}(aq) \rightarrow 3Fe^{3+}(aq) + NO(g) + 2H_2O(l)$
- (B) $Fe^{2+}(aq) + NO_3^{-}(aq) + 8 H+(aq) \rightarrow Fe^{3+}(aq) + NO(q) + 4H_2O(l)$
- (C) $2Fe^{2+}(aq) + 2NO_3^-(aq) + 4H^+(aq) \rightarrow 2Fe^{3+}(aq) + 2NO(g) + 4H_2O(l)$
- (D) $3Fe^{3+}(aq) + NO(g) + 2H_2O(l) \rightarrow 3Fe^{3+}(aq) + NO_3^{-}(aq) + 4H_2^{-}(aq)$

Question 2 [15]

2.1 To test a spectrophotometer's accuracy a solution of 60.06 ppm $K_2Cr_2O_7$ in 5.0 mM H_2SO_4 is prepared and analysed. This solution has an expected absorbance of 0.640 at 350.0 nm in a 1.0-cm cell when using 5.0 mM H_2SO_4 as a reagent blank. Several aliquots of the solution produce the following absorbance values.

- (a) Calculate the mean and standard deviation of the measured absorbance values. (2)
- (b) Determine whether there is a significant difference between the experimental mean and the expected value at a = 0.01 (i.e. P= 99%). (6)
- 2.2 One way to check the accuracy of a spectrophotometer is to measure absorbencies for a series of standard dichromate solutions obtained from the National Institute of Standards and Technology. Absorbencies (A) are measured at 257 nm and compared to the accepted values. The results obtained when testing a newly purchased spectrophotometer are shown below.


Standard	Measured A	Expected A
1	0.2872	0.2871
2	0.5773	0.5760
3	0.8674	0.8677
4	1.1623	1.1608
5	1.4559	1.4565

Determine if the tested spectrophotometer is accurate at a = 0.05. (7)

Question 3 [15]

3.1 A solution containing 3.47 mM of analyte and 1.72 mM of standard gave peak areas of 3,473 and 10,222, respectively, in a chromatographic analysis. Then 1.00 mL of 8.47 mM standard was added to 5.00 mL of unknown solution, and the mixture was diluted to 10.0 mL. This solution gave peak areas of 5 428 and 4 431 for the analyte and standard, respectively.

(a) Calculate the response factor for the analyte. (2)(b) Find the concentration of the standard in the 10.0 mL of mixed solution. (2)(c) Find the analyte concentration in the 10.0 mL of mixed solution. (2)(d) Find the analyte concentration in the original unknown. (2)3.2 The concentration of phenol in a water sample is determined by separating the phenol from non-volatile impurities by steam distillation, followed by reacting with 4-aminoantipyrine and $K_3Fe(CN)_6$ at pH 7.9 to form a colored antipyrine dye. A phenol standard with a concentration of 4.00 ppm has an absorbance of 0.424. A water sample is steam distilled and a 50.00-mL aliquot of the distillate is placed in a 100-mL volumetric flask and diluted to volume with distilled water. The absorbance of this solution is found to be 0.394. (a) What is the concentration of phenol (in parts per million) in the water sample? (3)(b) What calibration method has been used here? (2)(c) Briefly explain your choice of the calibration method. (2)**Question 4** [20] 4.1 For the following unbalanced reaction at 25°C $Fe^{2+} + MnO_4^- \leftrightarrow Fe^{3+} + Mn^{2+}$ (acidic medium) $(E^{0}_{Fe3+/Fe2+} = 0.771 \text{ V}; E^{0}_{MnO4-/Mn2+} = 1.51 \text{ V})$ (a) Write the balanced oxidation and reduction half reactions as well as the overall reaction. (3)(b) Calculate the standard potential, E^0 , of the reaction. (1)(c) Calculate the equilibrium constant, K, of the reaction. (2)(d) Calculate the potential, E, under the following conditions: $[Fe^{2+}] = 0.50 \text{ M}$, $[Fe^{3+}] = 0.10 \text{ M}, [MnO_4^-] = 0.025 \text{ M}, [Mn^{2+}] = 0.015 \text{ M}, and a pH of 7.00.}$ (2)4.2 Calculate the pH of the solution that results from the addition of 0.040 moles of HNO₃ to a buffer made by combining 0.500 L of 0.380 M HC₃H₅O₂ ($K_a = 1.30 \times 10^{-5}$) and 0.500 L of 0.380 M NaC₃H₅O₂. Assume addition of the nitric acid has no effect on volume. (5) 4.3 The following diagram shows the variation of the solubility of potassium tartrate $(K_2C_4H_4O_6)$ when adding different concentrations of several substances.

- (a) Explain the trend observed with the addition of MgSO₄ and NaCl. (2)
- (b) Why MgSO₄ produces a higher solubility than NaCl? (1)
- (c) Explain the trend observed with the addition of glucose. (2)
- (d) Why does the solubility of potassium tartrate decrease with the addition of KCI? (2)

Question 5 [30]

- 5.1 50.0 mL of 0.0400 M formic acid (HCOOH, $K_a = 1.80 \times 10^{-4}$) was titrated with 0.120 M NaOH.
 - (a) Write the balanced reaction of the titration. (1)
 - (b) calculate the volume of added titrant at the equivalence point. (2)
 - (c) Calculate the pH after addition of the following volumes of the titrant
 - (i) 0.0 mL
 - (ii) 10.0 mL
 - (iii) 20.0 mL

5.2 25.0 mL of 0.01 M V²⁺ is titrated using 0.01 M Ce⁴⁺ (E⁰_{V3+/V2+} = - 0.255 V; E⁰_{Ce4+/Ce3+} = + 1.72 V).
(a) Write the two redox half-reactions, the overall reaction and the potential (E) expressions for both redox half-reactions. (5)
(b) Calculate the potential of the titration after addition of
(i) 15.0 mL Ce⁴⁺ (5)
(ii) 25.0 mL Ce⁴⁺ (5)

TOTAL MARK = [100]

Data Sheet

Data Sheet
$$t_{calculated} = \frac{\left| \overline{x} - \mu \right|}{s} \sqrt{N} \qquad t_{calculated} = \frac{\overline{d}}{s_d} \sqrt{n} \qquad t_{calculated} = \frac{\left| \overline{X}_a - \overline{X}_b \right|}{s_{pooled}} \times \sqrt{\frac{n_a \times n_b}{n_a + n_b}}$$

$$s_{pooled} = \sqrt{\frac{s_a^2(N_a - 1) + s_b^2(N_b - 1) + \dots}{N_a + N_b + \dots - N_{\text{sets of data}}}} \qquad \qquad \mu = \overline{x} \pm \frac{ts}{\sqrt{n}}$$
 Confidence

Confidence

degrees Freedom	50%	90%	95%	99%
1	1.000	6.314	12.706	63.656
2	0.816	2.920	4.303	9.925
3	0.765	2.353	3.182	5.841
4	0.741	2.132	2.776	4.604
5	0.727	2.015	2.571	4.032
6	0.718	1.943	2.447	3.707
7	0.711	1.895	2.365	3.499
8	0.706	1.860	2.306	3.355
9	0.703	1.833	2.262	3.250
10	0.700	1.812	2.228	3.169
11	0.697	1.796	2.201	3.106
12	0.695	1.782	2.179	3.055
13	0.694	1.771	2.160	3.012
14	0.692	1.761	2.145	2.977
15	0.691	1.753	2.131	2.947
16	0.690	1.746	2.120	2.921
17	0.689	1.740	2.110	2.898
18	0.688	1.734	2.101	2.878
19	0.688	1.729	2.093	2.861
20	0.687	1.725	2.086	2.845
21	0.686	1.721	2.080	2.831
22	0.686	1.717	2.074	2.819
23	0.685	1.714	2.069	2.807
24	0.685	1.711	2.064	2.797
25	0.684	1.708	2.060	2.787
26	0.684	1.706	2.056	2.779
27	0.684	1.703	2.052	2.771
28	0.683	1.701	2.048	2.763
29	0.683	1.699	2.045	2.756
30	0.683	1.697	2.042	2.750
31	0.682	1.696	2.040	2.744
32	0.682	1.694	2.037	2.738
33	0.682	1.692	2.035	2.733
34	0.682	1.691	2.032	2.728
35	0.682	1.690	2.030	2.724

Critical Values for the Rejection Quotient

	Q _{crit} (Reject if Q _{exp} >	Q _{crit})
N	90% Confidence	95% Confidence	99% Confidence
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568

N = number of observations

2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.43 39.45 39.55 3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.25 14.17 13.99 4 12.22 10.65 9.979 9.605 9.364 9.197 9.074 8.980 8.905 8.444 8.657 8.560 8.25 5 10.01 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.428 6.329 6.01 6 8.813 7.260 6.599 6.227 5.988 5.820 5.695 5.600 5.523 5.461 5.269 5.168 4.89 7 8.073 6.542 5.890 5.523 5.285 5.119 4.995 4.899 4.823 4.761 4.568 4.467 4.14 8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4														
odenU 1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 984.9 993.1 1018 2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.43 39.45 39.50 3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.25 14.17 13.99 4 12.22 10.65 9.979 9.605 9.364 9.197 9.074 8.980 8.905 8.444 8.657 8.560 8.25 5 10.01 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.428 6.329 6.021 6 8.813 7.260 6.599 6.227 5.988 5.820 5.659 5.600 5.523 5.461 5.269 5.168	F(0.05, σι	num, σde	enom) fo	r a Two-1	Tailed F-T	est								
1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 984.9 993.1 1018 2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.43 39.45 39.51 3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.25 14.17 13.99 4 12.22 10.65 9.979 9.605 9.364 9.197 9.074 8.980 8.905 8.444 8.657 8.560 8.25 5 10.01 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.428 6.329 6.01 6 8.813 7.260 6.599 6.227 5.988 5.820 5.695 5.600 5.523 5.461 5.269 5.168 4.89 7 8.073 6.542 5.890 5.523 5.285 5.119 4.995 4	σnum⇒	1	2	3	4	5	6	7	8	9	10	15	20	∞
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.43 39.45 39.55 3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.25 14.17 13.99 4 12.22 10.65 9.979 9.605 9.364 9.197 9.074 8.980 8.905 8.444 8.657 8.560 8.25 5 10.01 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.428 6.329 6.01 6 8.813 7.260 6.599 6.227 5.988 5.820 5.695 5.600 5.523 5.461 5.269 5.168 4.89 7 8.073 6.542 5.890 5.523 5.285 5.119 4.995 4.829 4.823 4.761 4.568 4.467 4.14 8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4	σden∜													
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.25 14.17 13.99 4 12.22 10.65 9.979 9.605 9.364 9.197 9.074 8.980 8.905 8.444 8.657 8.560 8.25 5 10.01 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.428 6.329 6.01 6 8.813 7.260 6.599 6.227 5.988 5.820 5.695 5.600 5.523 5.461 5.269 5.168 4.89 7 8.073 6.542 5.890 5.523 5.285 5.119 4.995 4.899 4.823 4.761 4.568 4.467 4.14 8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4.433 4.357 4.259 4.101 3.999 3.676 9 7.209 5.715 5.078 4.718 4.484 4.320 4.197 4	1	647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.7	963.3	968.6	984.9	993.1	1018
4 12.22 10.65 9.979 9.605 9.364 9.197 9.074 8.980 8.905 8.444 8.657 8.560 8.25 5 10.01 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.428 6.329 6.01 6 8.813 7.260 6.599 6.227 5.988 5.820 5.695 5.600 5.523 5.461 5.269 5.168 4.899 7 8.073 6.542 5.890 5.523 5.285 5.119 4.995 4.899 4.823 4.761 4.568 4.467 4.14 8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4.433 4.357 4.259 4.101 3.999 3.677 9 7.209 5.715 5.078 4.718 4.484 4.320 4.197 4.102 4.026 3.964 3.769 3.667 3.33 10 6.937 5.456 4.826 4.468 4.236 4.072 3.950	2	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.43	39.45	39.50
5 10.01 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.428 6.329 6.01 6 8.813 7.260 6.599 6.227 5.988 5.820 5.695 5.600 5.523 5.461 5.269 5.168 4.89 7 8.073 6.542 5.890 5.523 5.285 5.119 4.995 4.899 4.823 4.761 4.568 4.467 4.14 8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4.433 4.357 4.259 4.101 3.999 3.679 9 7.209 5.715 5.078 4.718 4.484 4.320 4.197 4.102 4.026 3.964 3.769 3.667 3.33 10 6.937 5.456 4.826 4.468 4.236 4.072 3.950 3.855 3.779 3.717 3.522 3.419 3.08 11 <td>3</td> <td>17.44</td> <td>16.04</td> <td>15.44</td> <td>15.10</td> <td>14.88</td> <td>14.73</td> <td>14.62</td> <td>14.54</td> <td>14.47</td> <td>14.42</td> <td>14.25</td> <td>14.17</td> <td>13.90</td>	3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.25	14.17	13.90
6 8.813 7.260 6.599 6.227 5.988 5.820 5.695 5.600 5.523 5.461 5.269 5.168 4.899 7 8.073 6.542 5.890 5.523 5.285 5.119 4.995 4.899 4.823 4.761 4.568 4.467 4.14 8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4.433 4.357 4.259 4.101 3.999 3.67 9 7.209 5.715 5.078 4.718 4.484 4.320 4.197 4.102 4.026 3.964 3.769 3.667 3.33 10 6.937 5.456 4.826 4.468 4.236 4.072 3.950 3.855 3.779 3.717 3.522 3.419 3.081 11 6.724 5.256 4.630 4.275 4.044 3.881 3.759 3.644 3.588 3.526 3.330 3.226 2.888 12 6.544 5.096 4.474 4.121 3.891 3.728 3.607 <	4	12.22	10.65	9.979	9.605	9.364	9.197	9.074	8.980	8.905	8.444	8.657	8.560	8.257
7 8.073 6.542 5.890 5.523 5.285 5.119 4.995 4.899 4.823 4.761 4.568 4.467 4.14 8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4.433 4.357 4.259 4.101 3.999 3.67 9 7.209 5.715 5.078 4.718 4.484 4.320 4.197 4.102 4.026 3.964 3.769 3.667 3.33 10 6.937 5.456 4.826 4.468 4.236 4.072 3.950 3.855 3.779 3.717 3.522 3.419 3.081 11 6.724 5.256 4.630 4.275 4.044 3.881 3.759 3.644 3.588 3.526 3.330 3.226 2.88 12 6.544 5.096 4.474 4.121 3.891 3.728 3.607 3.512 3.436 3.374 3.177 3.073 2.72 13 6.414 4.965 4.347 3.996 3.767 3.604 3.483 <t< td=""><td>5</td><td>10.01</td><td>8.434</td><td>7.764</td><td>7.388</td><td>7.146</td><td>6.978</td><td>6.853</td><td>6.757</td><td>6.681</td><td>6.619</td><td>6.428</td><td>6.329</td><td>6.015</td></t<>	5	10.01	8.434	7.764	7.388	7.146	6.978	6.853	6.757	6.681	6.619	6.428	6.329	6.015
8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4.433 4.357 4.259 4.101 3.999 3.670 9 7.209 5.715 5.078 4.718 4.484 4.320 4.197 4.102 4.026 3.964 3.769 3.667 3.33 10 6.937 5.456 4.826 4.468 4.236 4.072 3.950 3.855 3.779 3.717 3.522 3.419 3.080 11 6.724 5.256 4.630 4.275 4.044 3.881 3.759 3.644 3.588 3.526 3.330 3.226 2.88 12 6.544 5.096 4.474 4.121 3.891 3.728 3.607 3.512 3.436 3.374 3.177 3.073 2.72 13 6.414 4.965 4.347 3.996 3.767 3.604 3.483 3.388 3.312 3.250 3.053 2.948 2.59 14 6.298 4.857 4.242 3.892 3.663 3.51 3.380 <	6	8.813	7.260	6.599	6.227	5.988	5.820	5.695	5.600	5.523	5.461	5.269	5.168	4.894
9 7.209 5.715 5.078 4.718 4.484 4.320 4.197 4.102 4.026 3.964 3.769 3.667 3.33 10 6.937 5.456 4.826 4.468 4.236 4.072 3.950 3.855 3.779 3.717 3.522 3.419 3.081 11 6.724 5.256 4.630 4.275 4.044 3.881 3.759 3.644 3.588 3.526 3.330 3.226 2.88 12 6.544 5.096 4.474 4.121 3.891 3.728 3.607 3.512 3.436 3.374 3.177 3.073 2.72 13 6.414 4.965 4.347 3.996 3.767 3.604 3.483 3.388 3.312 3.250 3.053 2.948 2.59 14 6.298 4.857 4.242 3.892 3.663 3.501 3.380 3.285 3.209 3.147 2.949 2.844 2.48 15 6.200 4.765 4.153 3.804 3.576 3.415 3.293	7	8.073	6.542	5.890	5.523	5.285	5.119	4.995	4.899	4.823	4.761	4.568	4.467	4.142
10 6.937 5.456 4.826 4.468 4.236 4.072 3.950 3.855 3.779 3.717 3.522 3.419 3.080 11 6.724 5.256 4.630 4.275 4.044 3.881 3.759 3.644 3.588 3.526 3.330 3.226 2.880 12 6.544 5.096 4.474 4.121 3.891 3.728 3.607 3.512 3.436 3.374 3.177 3.073 2.720 13 6.414 4.965 4.347 3.996 3.767 3.604 3.483 3.388 3.312 3.250 3.053 2.948 2.590 14 6.298 4.857 4.242 3.892 3.663 3.501 3.380 3.285 3.209 3.147 2.949 2.844 2.48 15 6.200 4.765 4.153 3.804 3.576 3.415 3.293 3.123 3.060 2.862 2.756 2.390 16 6.115 4.687 4.077 3.729 3.502 3.341 3.219 3.125	8	7.571	6.059	5.416	5.053	4.817	4.652	4.529	4.433	4.357	4.259	4.101	3.999	3.670
11 6.724 5.256 4.630 4.275 4.044 3.881 3.759 3.644 3.588 3.526 3.330 3.226 2.883 12 6.544 5.096 4.474 4.121 3.891 3.728 3.607 3.512 3.436 3.374 3.177 3.073 2.723 13 6.414 4.965 4.347 3.996 3.767 3.604 3.483 3.388 3.312 3.250 3.053 2.948 2.599 14 6.298 4.857 4.242 3.892 3.663 3.501 3.380 3.285 3.209 3.147 2.949 2.844 2.48 15 6.200 4.765 4.153 3.804 3.576 3.415 3.293 3.199 3.123 3.060 2.862 2.756 2.399 16 6.115 4.687 4.077 3.729 3.502 3.341 3.219 3.125 3.049 2.986 2.788 2.681 2.316 17 6.042 4.619 4.011 3.665 3.438 3.227 3.156	9	7.209	5.715	5.078	4.718	4.484	4.320	4.197	4.102	4.026	3.964	3.769	3.667	3.333
12 6.544 5.096 4.474 4.121 3.891 3.728 3.607 3.512 3.436 3.374 3.177 3.073 2.72 13 6.414 4.965 4.347 3.996 3.767 3.604 3.483 3.388 3.312 3.250 3.053 2.948 2.596 14 6.298 4.857 4.242 3.892 3.663 3.501 3.380 3.285 3.209 3.147 2.949 2.844 2.48 15 6.200 4.765 4.153 3.804 3.576 3.415 3.293 3.199 3.123 3.060 2.862 2.756 2.39 16 6.115 4.687 4.077 3.729 3.502 3.341 3.219 3.125 3.049 2.986 2.788 2.681 2.316 17 6.042 4.619 4.011 3.665 3.438 3.277 3.156 3.061 2.985 2.922 2.723 2.616 2.24 18 5.978 4.560 3.954 3.608 3.382 3.221 3.100	10	6.937	5.456	4.826	4.468	4.236	4.072	3.950	3.855	3.779	3.717	3.522	3.419	3.080
13 6.414 4.965 4.347 3.996 3.767 3.604 3.483 3.388 3.312 3.250 3.053 2.948 2.594 14 6.298 4.857 4.242 3.892 3.663 3.501 3.380 3.285 3.209 3.147 2.949 2.844 2.48 15 6.200 4.765 4.153 3.804 3.576 3.415 3.293 3.199 3.123 3.060 2.862 2.756 2.39 16 6.115 4.687 4.077 3.729 3.502 3.341 3.219 3.125 3.049 2.986 2.788 2.681 2.31 17 6.042 4.619 4.011 3.665 3.438 3.277 3.156 3.061 2.985 2.922 2.723 2.616 2.24 18 5.978 4.560 3.954 3.608 3.382 3.221 3.100 3.005 2.929 2.866 2.667 2.559 2.18 19 5.922 4.508 3.903 3.559 3.333 3.128 3.007	11	6.724	5.256	4.630	4.275	4.044	3.881	3.759	3.644	3.588	3.526	3.330	3.226	2.883
14 6.298 4.857 4.242 3.892 3.663 3.501 3.380 3.285 3.209 3.147 2.949 2.844 2.48 15 6.200 4.765 4.153 3.804 3.576 3.415 3.293 3.199 3.123 3.060 2.862 2.756 2.39 16 6.115 4.687 4.077 3.729 3.502 3.341 3.219 3.125 3.049 2.986 2.788 2.681 2.316 17 6.042 4.619 4.011 3.665 3.438 3.277 3.156 3.061 2.985 2.922 2.723 2.616 2.24 18 5.978 4.560 3.954 3.608 3.382 3.221 3.100 3.005 2.929 2.866 2.667 2.559 2.18 19 5.922 4.508 3.903 3.559 3.333 3.172 3.051 2.956 2.880 2.817 2.617 2.509 2.133 20 5.871 4.461 3.859 3.515 3.289 3.128 3.007	12	6.544	5.096	4.474	4.121	3.891	3.728	3.607	3.512	3.436	3.374	3.177	3.073	2.725
15 6.200 4.765 4.153 3.804 3.576 3.415 3.293 3.199 3.123 3.060 2.862 2.756 2.393 16 6.115 4.687 4.077 3.729 3.502 3.341 3.219 3.125 3.049 2.986 2.788 2.681 2.316 17 6.042 4.619 4.011 3.665 3.438 3.277 3.156 3.061 2.985 2.922 2.723 2.616 2.24 18 5.978 4.560 3.954 3.608 3.382 3.221 3.100 3.005 2.929 2.866 2.667 2.559 2.18 19 5.922 4.508 3.903 3.559 3.333 3.172 3.051 2.956 2.880 2.817 2.617 2.509 2.13 20 5.871 4.461 3.859 3.515 3.289 3.128 3.007 2.913 2.837 2.774 2.573 2.464 2.08	13	6.414	4.965	4.347	3.996	3.767	3.604	3.483	3.388	3.312	3.250	3.053	2.948	2.596
16 6.115 4.687 4.077 3.729 3.502 3.341 3.219 3.125 3.049 2.986 2.788 2.681 2.316 17 6.042 4.619 4.011 3.665 3.438 3.277 3.156 3.061 2.985 2.922 2.723 2.616 2.24 18 5.978 4.560 3.954 3.608 3.382 3.221 3.100 3.005 2.929 2.866 2.667 2.559 2.18 19 5.922 4.508 3.903 3.559 3.333 3.172 3.051 2.956 2.880 2.817 2.617 2.509 2.13 20 5.871 4.461 3.859 3.515 3.289 3.128 3.007 2.913 2.837 2.774 2.573 2.464 2.083	14	6.298	4.857	4.242	3.892	3.663	3.501	3.380	3.285	3.209	3.147	2.949	2.844	2.487
17 6.042 4.619 4.011 3.665 3.438 3.277 3.156 3.061 2.985 2.922 2.723 2.616 2.24 18 5.978 4.560 3.954 3.608 3.382 3.221 3.100 3.005 2.929 2.866 2.667 2.559 2.18 19 5.922 4.508 3.903 3.559 3.333 3.172 3.051 2.956 2.880 2.817 2.617 2.509 2.133 20 5.871 4.461 3.859 3.515 3.289 3.128 3.007 2.913 2.837 2.774 2.573 2.464 2.083	15	6.200	4.765	4.153	3.804	3.576	3.415	3.293	3.199	3.123	3.060	2.862	2.756	2.395
18 5.978 4.560 3.954 3.608 3.382 3.221 3.100 3.005 2.929 2.866 2.667 2.559 2.18 19 5.922 4.508 3.903 3.559 3.333 3.172 3.051 2.956 2.880 2.817 2.617 2.509 2.13 20 5.871 4.461 3.859 3.515 3.289 3.128 3.007 2.913 2.837 2.774 2.573 2.464 2.08	16	6.115	4.687	4.077	3.729	3.502	3.341	3.219	3.125	3.049	2.986	2.788	2.681	2.316
19 5.922 4.508 3.903 3.559 3.333 3.172 3.051 2.956 2.880 2.817 2.617 2.509 2.133 20 5.871 4.461 3.859 3.515 3.289 3.128 3.007 2.913 2.837 2.774 2.573 2.464 2.083	17	6.042	4.619	4.011	3.665	3.438	3.277	3.156	3.061	2.985	2.922	2.723	2.616	2.247
20 5.871 4.461 3.859 3.515 3.289 3.128 3.007 2.913 2.837 2.774 2.573 2.464 2.08	18	5.978	4.560	3.954	3.608	3.382	3.221	3.100	3.005	2.929	2.866	2.667	2.559	2.187
	19	5.922	4.508	3.903	3.559	3.333	3.172	3.051	2.956	2.880	2.817	2.617	2.509	2.133
∞ 5.024 3.689 3.116 2.786 2.567 2.408 2.288 2.192 2.114 2.048 1.833 1.708 1.00e	20	5.871	4.461	3.859	3.515	3.289	3.128	3.007	2.913	2.837	2.774	2.573	2.464	2.085
	∞	5.024	3.689	3.116	2.786	2.567	2.408	2.288	2.192	2.114	2.048	1.833	1.708	1.000

Physical Constants

/		
Gas constant	R	= 8.315 J K ⁻¹ mol ⁻¹
		= 8.315 kPa dm ³ K ⁻¹ mol ⁻¹
		= 8.315 Pa m ³ K ⁻¹ mol ⁻¹
		= 8.206 x 10 ⁻² L atm K ⁻¹ mol ⁻¹
Boltzmann constant	k	= 1.381 x 10 ⁻²³ J K ⁻¹
Planck constant	h	$= 6.626 \times 10^{-34} \text{ J K}^{-1}$
Faraday constant	F	$= 9.649 \times 10^4 \text{ C mol}^{-1}$
Avogadro constant L	or N _A	$= 6.022 \times 10^{23} \text{ mol}^{-1}$
Speed of light in vacuum	С	$= 2.998 \times 10^8 \text{ m s}^{-1}$
Mole volume of an ideal gas	V_m	= 22.41 L mol ⁻¹ (at 1 atm and 273.15 K)
= 22.71 L mol ⁻¹ (at 1 bar and 273	3.15 K)	
Elementary charge	е	$= 1.602 \times 10^{-19} \mathrm{C}$
Rest mass of electron	m_e	$= 9.109 \times 10^{-31} \mathrm{kg}$
Rest mass of proton	m_p	$= 1.673 \times 10^{-27} \mathrm{kg}$
Rest mass of neutron	m_n	$= 1.675 \times 10^{-27} \mathrm{kg}$
Permitivity of vacuum	ϵ_{o}	= $8.854 \times 10^{-12} \mathrm{C}^2 \mathrm{J}^{-1} \mathrm{m}^{-1} \mathrm{(or F m}^{-1})$
Gravitational acceleration	g	= 9.807 m s ⁻²

Conversion Factors

1 W = 1 J s⁻¹
= 0.2390 cal = 1 N m = 1 V C
= 1 Pa m³ = 1 kg m² s⁻²
1 cal = 4.184 J
1 eV = 1.602 x 10⁻¹⁹ J
1 L atm = 101.3 J
1 atm = 1.013 x 10⁵ N m⁻² = 1.013 x 10⁵ Pa = 760 mmHg
1 bar = 1 x 10⁵ Pa
1 L = 10⁻³ m³ = 1 dm³
1 Angstrom = 1 x 10⁻¹⁰ m = 0.1 nm = 100 pm
1 micron (
$$\mu$$
) = 10⁻⁶ m = 1 μ m
1 Poise = 0.1 Pa s = 0.1 N sm⁻²
1 ppm = 1 ug g⁻¹ = 1 mg kg⁻¹

= 1 mg L⁻¹ (dilute aqueous solutions only)

$$\frac{S_{\text{samp}}}{C_{\text{A}} \frac{V_{\text{o}}}{V_{\text{f}}}} = \frac{S_{\text{spike}}}{C_{\text{A}} \frac{V_{\text{o}}}{V_{\text{f}}} + C_{\text{std}} \frac{V_{\text{std}}}{V_{\text{f}}}}$$

1 ppm

$$\frac{S_{\text{samp}}}{C_{\text{A}}} = \frac{S_{\text{spike}}}{C_{\text{A}} \frac{V_{\text{o}}}{V_{\text{o}} + V_{\text{std}}} + C_{\text{std}} \frac{V_{\text{std}}}{V_{\text{o}} + V_{\text{std}}}}$$

$$E^{o} = \frac{0.05916}{n} \log K \quad E^{o} = E^{o}_{\text{sed}} - E^{o}_{\text{ox}} \quad E = E^{o} - \frac{0.05916}{n} \log Q$$

H			_		_			_			_												
H		-	10	4	18	Ar		36	Kr		54	Xe		98	\simeq								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				•	17	ひ			Br		53	I	126.90	85	At	(210)					n	174.97	
H B S S S S S S S S S				15.999		S	32.064		Se	78.96		Te	127.60		Po	(209)				71		173.04	103
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				14.007		Ь	30.974		As	74.922		Sp	121.75		<u>B</u>	208.98				70		168.93	102
H			ζ	12.011		Si	28.086		g	72.61		Sn	118.71		Pb	207.2				69		167.26	101
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				10.811		¥	26.982		Ga	69.723		In	114.82		E	204.38				89			100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			5	-	13			31			49			81						19			86
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								30	Zn	65.39	18			30	Hg	200.59					Dy	162.50	
H			ight						Ca	63.546		Ag	107.87		Au	196.97					Tp	158.93	
H			Atomic We						Ż	58.69		Pd	106.42		Pt	195.08					PS	157.25	
H									ပိ	58.933		Z P	102.91		Ir	192.22					En	151.97	
H Li Be 6941 9.0122 Na Mg 122990 22399 24308 K Ca 88.40 88.40 S5.47 88.50 K Ca 88.50 S5.40		72				•			Fe	55.847		Ru	101.07		SO	190.2					Sm	150.36	
H Libora Libora		ic Number							Mn	54.938			(88)		Re	186.2						146.92	
H Lion9 4 Li Be 6941 9,0122 L2 Mg 22.999 24305 L2 K Ca 38.096 91.224 92.906 S5-47 87.62 88.906 91.224 92.906 S5-47 87.62 87.62 88.906 91.224 92.906 S5-47 87.62 87.62 87.62 S5-47 87.62 87.62 87		Atom							Ċ	51.996		Mo	95.94		*	183.85						144.24	
H Li								24	>	50.942	42		92.906	74	La	180.95				09			92
H Lion 4 Li Be 6941 9.0122 Na Mg 22.990 24305 Rb Sr 87.62 Sc 132.91 137.33 Fr Ra 88 Fr Ra Ac Output								23		88.	41		224	73		46				95		.12	16
H 10079 Li Be 6941 9.0122 Na Mg 22.999 24305 Rb Sr 85.47 87.62 Ss.47 87.62 Ss.47 87.62 Ss.47 87.62 Ss.47 87.62 Fr Ra F								22	T		40	Zr		72	<u> </u>				3	58	S C	140	06
H 10079 1007								21	Z	44.95	39	X	98.90	57	La	- 1	68	Ac	227.0				
H 10079 1007				1122	Γ	br	305	Γ	_	.078	Γ	_	7.62			7.33			603				
	Γ	62	4 6		12			20	ű		38	Š		99	<u> </u>		88	R					
		H 1.000.1	_	69.	11	Na	22.9	19	×	39.0	37	Rb	85.	55	Č		81	F	(22				

58	26	09	19	62	63	64	9	99	19	89	69	02	71
Ce	Pr	PN	Pm	Sm	Eu	PS	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	146.92	150.36	151.97				164.93			173.04	174.97
06	16	92	93	94	95	96	16	86	66	100	101	102	103
Th	Pa	n	ď	Pu	Am	Cm	Bk	Ct	Es	Fm	Md	No No	Ľ
232.04	231.04	238.03	237.05	(244)	(234)		247	(251)	(252)	(257)	(258)		(260)